Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 4(1): vbae015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698887

RESUMO

Motivation: Patient stratification is crucial for the effective treatment or management of heterogeneous diseases, including cancers. Multiomic technologies facilitate molecular characterization of human diseases; however, the complexity of data warrants the need for the development of robust data integration tools for patient stratification using machine-learning approaches. Results: iCluF iteratively integrates three types of multiomic data (mRNA, miRNA, and DNA methylation) using pairwise patient similarity matrices built from each omic data. The intermediate omic-specific neighborhood matrices implement iterative matrix fusion and message passing among the similarity matrices to derive a final integrated matrix representing all the omics profiles of a patient, which is used to further cluster patients into subtypes. iCluF outperforms other methods with significant differences in the survival profiles of 8581 patients belonging to 30 different cancers in TCGA. iCluF also predicted the four intrinsic subtypes of Breast Invasive Carcinomas with adjusted rand index and Fowlkes-Mallows scores of 0.72 and 0.83, respectively. The Gini importance score showed that methylation features were the primary decisive players, followed by mRNA and miRNA to identify disease subtypes. iCluF can be applied to stratify patients with any disease containing multiomic datasets. Availability and implementation: Source code and datasets are available at https://github.com/GudaLab/iCluF_core.

2.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37870089

RESUMO

Macroheterogeneity in follicle-stimulating hormone (FSH) ß-subunit N-glycosylation results in distinct FSH glycoforms. Hypoglycosylated FSH21 is the abundant and more bioactive form in pituitaries of females under 35 years of age, whereas fully glycosylated FSH24 is less bioactive and increases with age. To investigate whether the shift in FSH glycoform abundance contributes to the age-dependent decline in oocyte quality, the direct effects of FSH glycoforms on folliculogenesis and oocyte quality were determined using an encapsulated in vitro mouse follicle growth system. Long-term culture (10-12 days) with FSH21 (10 ng/ml) enhanced follicle growth, estradiol secretion and oocyte quality compared with FSH24 (10 ng/ml) treatment. FSH21 enhanced establishment of transzonal projections, gap junctions and cell-to-cell communication within 24 h in culture. Transient inhibition of FSH21-mediated bidirectional communication abrogated the positive effects of FSH21 on follicle growth, estradiol secretion and oocyte quality. Our data indicate that FSH21 promotes folliculogenesis and oocyte quality in vitro by increasing cell-to-cell communication early in folliculogenesis, and that the shift in in vivo abundance from FSH21 to FSH24 with reproductive aging may contribute to the age-dependent decline in oocyte quality.


Assuntos
Hormônio Foliculoestimulante , Oócitos , Feminino , Camundongos , Animais , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/fisiologia , Folículo Ovariano , Comunicação Celular , Estradiol/farmacologia
3.
Cancers (Basel) ; 15(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046795

RESUMO

Osteosarcoma (OS) is a common bone malignancy in children and adolescents. Although histological subtyping followed by improved OS treatment regimens have helped achieve favorable outcomes, a lack of understanding of the molecular subtypes remains a challenge to characterize its genetic heterogeneity and subsequently to identify diagnostic and prognostic biomarkers for developing effective treatments. In the present study, global analysis of DNA methylation, and mRNA and miRNA gene expression in OS patient samples were correlated with their clinical characteristics. The mucin family of genes, MUC6, MUC12, and MUC4, were found to be highly mutated in the OS patients. Results revealed the enrichment of molecular pathways including Wnt signaling, Calcium signaling, and PI3K-Akt signaling in the OS tumors. Survival analyses showed that the expression levels of several genes such as RAMP1, CRIP1, CORT, CHST13, and DDX60L, miRNAs and lncRNAs were associated with survival of OS patients. Molecular subtyping using Cluster-Of-Clusters Analysis (COCA) for mRNA, lncRNA, and miRNA expression; DNA methylation; and mutation data from the TARGET dataset revealed two distinct molecular subtypes, each with a distinctive gene expression profile. Between the two subtypes, three upregulated genes, POP4, HEY1, CERKL, and seven downregulated genes, CEACAM1, ABLIM1, LTBP2, ISLR, LRRC32, PTPRF, and GPX3, associated with OS metastasis were found to be differentially regulated. Thus, the molecular subtyping results provide a strong basis for classification of OS patients that could be used to develop better prognostic treatment strategies.

4.
Radiat Res ; 199(1): 89-111, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368026

RESUMO

Increasing utilization of nuclear power enhances the risks associated with industrial accidents, occupational hazards, and the threat of nuclear terrorism. Exposure to ionizing radiation interferes with genomic stability and gene expression resulting in the disruption of normal metabolic processes in cells and organs by inducing complex biological responses. Exposure to high-dose radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, cerebrovascular, and many other organ-specific injuries. Altered genomic variations, gene expression, metabolite concentrations, and microbiota profiles in blood plasma or tissue samples reflect the whole-body radiation injuries. Hence, multi-omic profiles obtained from high-resolution omics platforms offer a holistic approach for identifying reliable biomarkers to predict the radiation injury of organs and tissues resulting from radiation exposures. In this review, we performed a literature search to systematically catalog the radiation-induced alterations from multi-omic studies and radiation countermeasures. We covered radiation-induced changes in the genomic, transcriptomic, proteomic, metabolomic, lipidomic, and microbiome profiles. Furthermore, we have covered promising multi-omic biomarkers, FDA-approved countermeasure drugs, and other radiation countermeasures that include radioprotectors and radiomitigators. This review presents an overview of radiation-induced alterations of multi-omics profiles and biomarkers, and associated radiation countermeasures.


Assuntos
Síndrome Aguda da Radiação , Protetores contra Radiação , Humanos , Protetores contra Radiação/farmacologia , Multiômica , Proteômica , Síndrome Aguda da Radiação/diagnóstico , Síndrome Aguda da Radiação/etiologia , Biomarcadores
5.
Genes (Basel) ; 13(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36140696

RESUMO

Identification of miRNA-mRNA interactions is critical to understand the new paradigms in gene regulation. Existing methods show suboptimal performance owing to inappropriate feature selection and limited integration of intuitive biological features of both miRNAs and mRNAs. The present regularized least square-based method, mintRULS, employs features of miRNAs and their target sites using pairwise similarity metrics based on free energy, sequence and repeat identities, and target site accessibility to predict miRNA-target site interactions. We hypothesized that miRNAs sharing similar structural and functional features are more likely to target the same mRNA, and conversely, mRNAs with similar features can be targeted by the same miRNA. Our prediction model achieved an impressive AUC of 0.93 and 0.92 in LOOCV and LmiTOCV settings, respectively. In comparison, other popular tools such as miRDB, TargetScan, MBSTAR, RPmirDIP, and STarMir scored AUCs at 0.73, 0.77, 0.55, 0.84, and 0.67, respectively, in LOOCV setting. Similarly, mintRULS outperformed other methods using metrics such as accuracy, sensitivity, specificity, and MCC. Our method also demonstrated high accuracy when validated against experimentally derived data from condition- and cell-specific studies and expression studies of miRNAs and target genes, both in human and mouse.


Assuntos
MicroRNAs , Animais , Regulação da Expressão Gênica , Humanos , Análise dos Mínimos Quadrados , Camundongos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
6.
Comput Struct Biotechnol J ; 19: 1635-1640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897975

RESUMO

Glycomics, the study of the entire complement of sugars of an organism has received significant attention in the recent past due to the advances made in high throughput mass spectrometry technologies. These analytical advancements have facilitated the characterization of glycans associated with the follicle-stimulating hormones (FSH), which play a central role in the human reproductive system both in males and females utilizing regulating gonadal (testicular and ovarian) functions. The irregularities in FSH activity are also directly linked with osteoporosis. The glycoanalytical studies have been tremendously helpful in understanding the biological roles of FSH. Subsequently, the increasing number of characterized FSH glycan structures and related glycoform data has thrown a challenge to the glycoinformatics community in terms of data organization, storage and access. Also, a user-friendly platform is needed for providing easy access to the database and performing integrated analysis using a high volume of experimental data to accelerate FSH-focused research. FSH Glycans DataBase (FGDB) serves as a comprehensive and unique repository of structures, features, and related information of glycans associated with FSH. Apart from providing multiple search options, the database also facilitates an integrated user-friendly interface to perform the glycan abundance and comparative analyses using experimental data. The automated integrated pipelines present the possible structures of glycans and variants of FSH based on the input data, and allow the user to perform various analyses. The potential application of FGDB will significantly help both glycoinformaticians as well as wet-lab researchers to stimulate the research in this area. FGDB web access: https://fgdb.unmc.edu/.

7.
Chem Biol ; 22(8): 1144-55, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26211361

RESUMO

Chemical perturbation screens offer the possibility to identify actionable sets of cancer-specific vulnerabilities. However, most inhibitors of kinases or other cancer targets result in polypharmacological effects, which complicate the identification of target dependencies directly from the drug-response phenotypes. In this study, we developed a chemical systems biology approach that integrates comprehensive drug sensitivity and selectivity profiling to provide functional insights into both single and multi-target oncogenic signal addictions. When applied to 21 breast cancer cell lines, perturbed with 40 kinase inhibitors, the subtype-specific addiction patterns clustered in agreement with patient-derived subtypes, while showing considerable variability between the heterogeneous breast cancers. Experimental validation of the top predictions revealed a number of co-dependencies between kinase targets that led to unexpected synergistic combinations between their inhibitors, such as dasatinib and axitinib in the triple-negative basal-like HCC1937 cell line.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Biologia de Sistemas/métodos
8.
Brief Bioinform ; 16(2): 325-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24723570

RESUMO

A number of supervised machine learning models have recently been introduced for the prediction of drug-target interactions based on chemical structure and genomic sequence information. Although these models could offer improved means for many network pharmacology applications, such as repositioning of drugs for new therapeutic uses, the prediction models are often being constructed and evaluated under overly simplified settings that do not reflect the real-life problem in practical applications. Using quantitative drug-target bioactivity assays for kinase inhibitors, as well as a popular benchmarking data set of binary drug-target interactions for enzyme, ion channel, nuclear receptor and G protein-coupled receptor targets, we illustrate here the effects of four factors that may lead to dramatic differences in the prediction results: (i) problem formulation (standard binary classification or more realistic regression formulation), (ii) evaluation data set (drug and target families in the application use case), (iii) evaluation procedure (simple or nested cross-validation) and (iv) experimental setting (whether training and test sets share common drugs and targets, only drugs or targets or neither). Each of these factors should be taken into consideration to avoid reporting overoptimistic drug-target interaction prediction results. We also suggest guidelines on how to make the supervised drug-target interaction prediction studies more realistic in terms of such model formulations and evaluation setups that better address the inherent complexity of the prediction task in the practical applications, as well as novel benchmarking data sets that capture the continuous nature of the drug-target interactions for kinase inhibitors.


Assuntos
Descoberta de Drogas/estatística & dados numéricos , Biologia Computacional , Bases de Dados de Produtos Farmacêuticos/estatística & dados numéricos , Humanos , Modelos Biológicos , Modelos Estatísticos , Relação Quantitativa Estrutura-Atividade , Aprendizado de Máquina Supervisionado/estatística & dados numéricos
9.
J Chem Inf Model ; 54(3): 735-43, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24521231

RESUMO

We carried out a systematic evaluation of target selectivity profiles across three recent large-scale biochemical assays of kinase inhibitors and further compared these standardized bioactivity assays with data reported in the widely used databases ChEMBL and STITCH. Our comparative evaluation revealed relative benefits and potential limitations among the bioactivity types, as well as pinpointed biases in the database curation processes. Ignoring such issues in data heterogeneity and representation may lead to biased modeling of drugs' polypharmacological effects as well as to unrealistic evaluation of computational strategies for the prediction of drug-target interaction networks. Toward making use of the complementary information captured by the various bioactivity types, including IC50, K(i), and K(d), we also introduce a model-based integration approach, termed KIBA, and demonstrate here how it can be used to classify kinase inhibitor targets and to pinpoint potential errors in database-reported drug-target interactions. An integrated drug-target bioactivity matrix across 52,498 chemical compounds and 467 kinase targets, including a total of 246,088 KIBA scores, has been made freely available.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Animais , Biologia Computacional/métodos , Bases de Dados Factuais , Descoberta de Drogas/métodos , Humanos
10.
Bioinformation ; 4(4): 158-63, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20198193

RESUMO

SSR (simple sequence repeats) are ubiquitously abundant in genomes. In organellar mitochondrial genome of animals, its distribution, size dynamics and effectiveness for phylogenetic relationship have not been understood. Present investigation reveals organisation of SSR in genic and intergenic region, its length and repeat motif dynamics, extent of conservation of flanking regions, appropriateness of these SSR data in establishing phylogenetic relationship. Contrary to eukaryotic nuclear abundance of SSR in non-coding region, we found abundance in coding region. Like nuclear SSR, most hyper mutable repeats were found in non coding region having di nucleotide motifs of mitochondrial genome but contrary to human having high mutable tetra repeats in case of mitochondrial genomes this was found to be with tri-motif repeats. SSR of mitochondrial genomes also show cyclical expansion and shrinkage in pattern of SHM (simple harmonic motion) with respect to time its non- linear thus not appropriate for phylogenetic analysis though the flanking regions of these SSR also conserved like nuclear SSR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...